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Abstract 

The development of induction-based processing of carbon-fiber (CF) 
thermoplastic-matrix composites and accelerated cure of thermosetting 
adhesives has the potential to provide nonautoclave processing technology for 
manufacturing and repair of polymer-matrix composites (PMCs). In this report, 
the results of recent tests demonstrating bonding of composites. using 
commercial off-the-shelf thermal-cure adhesives that are heat cured via an 
induction field using an inductive susceptor are discussed. This method of cure 
utilizes heat generation within metal screen-based susceptors to cure the 
adhesive makx via a heat transfer mechanism. The mechanical-performance of 
these bonds is presented in comparison with autoclave and thermally cured 
baselines. No substantial loss of mechanical lap-shear strength is observed in 
adhesive bonds processed by induction. In addition, an example of induction 
welding of a thermoplastic-impregnated carbon fiber (A!%) is presented. In 
order to successfully demonstrate induction welding for manufacture of CF 
composites, the degradation of the polymer in the laminates is also investigated. 
No measurable degradation of the polymer, either by dielectric or thermal 
breakdown when heated by induction, was observed. 
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1. Introduction 

The U.S. Army is currently pursuing the development of low-cost nonautoclave 
manufacturing technologies for polymer-matrix composites (PMCs) that will 
allow the U.S. military and contractors to prepare high-performance composites 
for armor, munition, and vehicle applications with reduced costs, reduced 
environmental impact, and increased efficiency. The authors have previously 
introduced the concept of induction-based processing and the environmental 
impacts for Army applications [l]. The initial repair demonstrations involved 
heat generation using a metallic (electrically conductive) mesh to translate 
electiomagnetic energy into thermal energy at an adhesive bond line. In this 
report, the background and physics of induction processing in carbon-fiber 
thermoplastic laminates is reviewed and the successful development of 
induction healing that allows suitable repair of many composite stictures is 
discussed. Specifically, the adhesive bonding using susceptor-based induction 
heating, susceptorless induction-based carbon-fiber laminate consolidation, and 
development of process models for electromagnetic heating of carbon-fiber 
composites, including heat generation by carbon fibers, metal-mesh susceptors, 
and magnetoresistive particles is discussed. 

2. Induction-Based Repair and Remanufacturing 

The search for cost-effective environmentally friendly manufacturing methods 
has led to the study of induction heating for bonding and processing of 
composites [l]. Electromagnetic cure methods involve using induction or 
electrical resistance heating focused directly at the material to be cured. 
Induction heating occurs when a current-carrying body, or coil, is placed near 
another conductor, the susceptor material. The magnetic field caused by the 
current in the coil induces a current in the susceptor. This induced current 
causes the susceptor to heat due to Joule heating, and, in the case of a 
ferromagnetic material, due to hysteresis losses. Carbon-fiber reinforcement in 
composite materials can function as the susceptor. For other material systems, 
the susceptor is a metallic mesh or magnetic particles. Energy can be introduced 
into the precise region to be cured both in the plane of the structure and at the 
specific depth required [2]. 

The ability of induction heating to rapidly process carbon-fiber-based 
thermoplastic composites is a significant environmental asset. Assuming that the 
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thermoplastic composite meets the performance and quality requirements of an 
equivalent thermoset counterpart, one can replace the limited shelf-life thermoset 
with the unlimited shelf-life thermoplastic. This completely eliminates 
hazardous raw material wastes at the production level resulting from shelf-life 
expiration and raw-material overages associated with thermoset-based 
composites production. 

Other advantages of induction include reduction of volatile organic compounds 
(VOCs) and nitrous oxide (NO ) X emissions by processing out of the autoclave, 
localizing processing controls for repair and remanufacturing, and eliminating 
processing steps. In addition, induction offers internal noncontact heating; the 
possibility of a moving heat source (the coil) to heat large areas; high efficiency; 
control of the heat generation by coil design or by susceptor design; and 
powerful, portable, and easy-to-operate units [3,4]. 

2.1 Induction-Based Repair of Multifunctional Composite Armor 

This research is motivated by the expanding use of multifunctional hybrid 
materials in military ground vehicles and the increasing need for field-expedient 
and depot-level repair procedures for these thick-section components. 

The critical issue in adhesive-based repair of composites is the application of 
sufficient heat and pressure at the bond line. It is highly desirable that thermal 
generation be localized at the bond line and be evenly distributed (taking into 
account thermal conductive losses). This is especially important with the 
increasing use of multifunctional hybrid composites, such as composite armor. 
These composites typically have several layers, each serving a different function, 
as shown in Figure 1. Repair of such a thick-section composite will require 
heating locally at the appropriate bond lines; one such method is induction 
heating [5,4]. In addition, due to the noncontact nature of induction heating, it 
may be possible to bond several layers at the same time, which reduces 
hazardous waste, energy consumption, arid repair times for the part. 
Conventional repair techniques (e.g., heat blankets) will require bonding of one 
layer at a t&e, resulting in multiple potential hazardous waste streams such as 
trim, consumables, and VOC emissions. 

While the induction-based repair procedure has the potential to reduce 
hazardous waste, it is essential that the repaired part meet the performance 
requirements dictated by the application. Hence, the initial work done under the 
program focuses on evaluating the performance of induction-based repair 
procedures. The goal is to obtain performance similar to that achieved with 
conventional repair procedures- 

Recent studies [I, 7, 81 have shown similar properties for induction-heated 
adhesive bonds compared to baselines for room-temperature adhesives. 
Electrically conductive mesh susceptors and epoxy-based adhesives were used. 
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significantly from bond line temperatures due to the good thermal conduction of 
carbon fibers; this was confirmed by thermocouple measurements. For 
glass/vinyl ester, differentials of up to *lO “C between the bond line and surface 
were noted. Further refinements to determine the ideal motion velocity and 
pattern for minimal temperature gradients are in progress. 

For a carbon/epoxy substrate or adherend, no susceptor is necessary. However, 
bonding tests were performed for both cases (i.e., with and without the mesh 
susceptor) to assess the presence of the mesh on bond strengths. For the 
carbon/epoxy substrate, all three adhesive systems were induction bonded, with 
and without the mesh. For the glass/vinyl-ester system, the SW-2214 adhesive 
was induction bonded with the mesh, as the cure cycle of the other systems 
(350 “F) could cause degradation in the substrate. All the induction-bonded 
specimens were fabricated under vacuum pressure. Table 1 lists the baselines; 
Table 2 lists the test cases. 

Table 1. Baselines for comparison with induction bonding. 

I I ( Number of T -~-- I I 
Case Substrate Specimens Adhesive Cure Cycle 

A Carbon/Epoxy 6 SW-2214 250 “F, Vacuum 
B SW-2214 + mesha 60 min 
A Carbon/Epoxy 6 EC-1386 350 “F, Vacuum 
B EC-1386 + mesh 6omin 
A FMSOOK 350 “F, Vacuum 
B FM3OOK f mesh 6Omin 

Carbon/Epoxy 6 
E FMSOOK 350 “F, 40 psi 
F FM300K + mesh 6Omin- 

G Glass/Vinyl Ester 6 
SW-2214 250 “F, Vacuum 

SW-2214 + mesh 6Omin 
aMesh = SS304,30 x 30,0.0075-in wire. 

Baseline lap-shear specimens were fabricated according to the manufacturer’s 
recommended cure cycles. For the FM300K adhesive system, two pressures were 
considered: vacuum (-15 psi) and 40 psi. For aII other autoclave specimens, 
vacuum pressure was used. This allows for direct comparison with induction- 
bonded lap-shear tests, which were performed tider vacuum pressure. 

Test cases of single lap-shear (SLS) specimens were fabricated as described in 
Table 2. The adhesive bond-line thicknesses for the specimens were measured 
by means of a traveling microscope. In all cases where no susceptor or mesh was 
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Table 2. Test cases for induction bonding. 

Case Substrate 
Number of 
Snecimens 

I I 

Adhesive r ~~ Cure Cycle 
C 
D 

Carbon/ Epoxy 6 
SW-2214 250 “F, Vacuum 

SW-2214 + mesha 6Oti 
C 

Carbon/Epoxy 6 
EC-1386 350 “F, Vacuum 

D EC-1386 + mesh 60 min 

Carbon/Epoxy 
I 

6 
I 

FM300K 350 “F, Vacuum 
FM300K + mesh I 6Omin I 

H Glass/Vinyl Ester 6 SW-2214 + mesh 
250 “F, Vacuum 

6Olllill 
a Mesh = F&304,30 x 30,0.0075-in wire. 

used, the thickness of the bond line was consistently about 0.002 in. The mesh 
caused an increase @ bond-line thickness to about 0.013 in. These values were 
very consistent and did not appear to vary greatly between specimens. The 
effect of bond line thickness variation was not considered in the analysis, 
although it is recognized that this variable may be significant. 

2.1.3 Mechanical Performance 

All SLS specimens were tested to failure in an Instron universal testing machine. 
The mean nominal shear strengths and the associated error bars are shown in 
Figures 5, 6, and 7 ,for SW-2214, FM300K, and EC-1386, respectively. Six 
specimens were tested for each case, and in all cases cohesive failure of the 
adhesive layer was obtained. Degree of cure for each case was determined by 
differential scanning calorimetry (DSC) and was greater than 95% for all 
observed specimens. 

In general, for all the adhesive systems, no loss in mechanical performance is 
noted, between induction-cured and autoclave baseline specimens. In some 
cases (Figures 5 and 7), the induction-cured specimens exhibit higher mean shear 
strengths, which may reflect the thinner bond line. The same bend is observed 
for the glass/vinyl-ester system (cases G and H in Figure 5). It is also interesting 
to note the relatively similar scatter in strength data between the induction-cured 
specimens and the autoclaved baselines, despite the temperature differentials 
during induction cure. For the FM300K film adhesive system, higher pressure 
during the cure cycle (40 psi) causes a significant increase in the bond strength 
but not in the presence of a mesh. However, the presence of the mesh does not 
seem to affect performance in vacuum-processed specimens. For the EC-1386 
and SW-2214 paste adhesives, the mesh causes a significant drop in stiength. 

7 



35007 

3000 i T 
2500 

5, 2000 
B 
z 
j 1500 
WI 

500 

0 
’ A ’ B ’ C ’ D ’ G 

Test Cases 

Figure 5. Mechanical performance for SW-2214 adhesive system cured at 250 “F. (A-H 
are defined in Tables 1 and 2). 

Figure 6. Me char&al performance for FM300K adhc :sive system cured at 350 “F. 
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Figure 7. Mechanical performance for EC-1386 adhesive system cured at 350 “F. 

2.1.4 Conclusions to Induction-Based Adhesive Bonding 

Following the methodology established in the previous work [9] on thermoset 
adhesive cure, performance studies of high-temperature curing adhesive 
systems, due to induction cure, have shown no loss in bond strengths between 
baselines and induction processing. This study, along with the previous effort 
[9], validates induction cure as an alternative method for processing thermally 
curable adhesives while retaining baseline bond strengths. Advantages of 
induction cure stem from reduction of VOCs and NO, emissions by processing 
out of the autoclave and an increased cure rate due to through-thickness heating. 
It also provides a unique ability to perform multimaterial repairs (as in 
composite armor) in a single step, thus eliminating process steps and 
corresponding hazardous waste. 

2.2 Induction-Based Remanufacture of Thermoplastic Composite 
Laminates 

The Department of Defense (DOD) has increased use of carbon-fiber-reinforced 
thermoset prepregs, resulting in a potentially significant hazardous waste stream 
due to shelf-life expiration and VOC emissions during processing [l]. It is 
estimated that the raw material requirements (i.e., prepreg) for one particular 
application will exceed one million pounds annually when that weapon system 
goes into full-scale production, and the potential waste is estimated at 20% of the 
total [l]. This problem can be avoided by the replacement of thermoset-based 
carbon-fiber composite laminates with carbon-fiber-reinforced thermoplastic 
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The primary objective of this study is to investigate the heating mechanisms of 
carbon/thermoplastics and then determine the relationship between the 
induction coil and material parameters and heating, Once this relationship is 
determined, it will be possible to perform parametric studies using the major 
process variables in order to optimize and meet the thermal requirements for the 
potential production of thermoplastic-based composite structures- 

2.2.1.1 Theoretical Heating Model 

Alternating magnetic field lines intersecting the laminate induce emf’s within 
each conductive loop are governed by Faraday’s Law of Induction [12]. Loops 
are formed between adjacent plies through the junctions, where fibers overlap 
each other. As a result, the induced current flows along the carbon fibers and 
either through the polymeric region or by direct contact of fibers, into its adjacent 
ply, as shown in Figure 9. Generally the emf induced in a circuit is directly 
proportional to the time rate of change of magnetic flux through the circuit and is 
calculated from 

emf =m4Bo =2nfABo, (1) 

where Bo is the maximum value of the magnetic field normal to the area of the 
conductive loop, A is the area of the conductive loop, and f is the time rate of 
change of magnetic flux. 

Once the emf values for all conductive loops in the calculation domain are 
obtained, Kirchoff’s voltage and current conservation laws are applied to the 
network of conductive loops. Kirchoff’s voltage law (KVL) [12] requires that the 
algebraic sum of all voltages around the loop should be zero while Kirchoff’s 
current law (KCL) means that current is conserved at each node. In 
mathematical terms, they can be expressed as follows: 

c Voltage Drop = Induced emf ; Kirchoff s Voltage Law 

c (Incoming Current - Outgoing Current) = 0 ; Kirchoff s Current Law 
(2) 

Three heating mechanisms are possible within the composite: 

l Joule heating due to the inherent electrical resistivity of the carbon 
fibers. 

l Dielectric heating of the polymer at the fiber junctions. 

l Contact resistance at the fiber junctions. 

In general, prepregs have nonuniform surface roughnesses, which makes it 
difficult to determine which mechanism is dominant at a certain region in the 
interface between plies. In addition, it is not easy to estimate the elecnical 
contact resistance between carbon fibers of adjacent plies. The heating 
mechanisms are shown schematically in Figure 10 and described in detail 
hereafter. 
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2.2.1.2 Joule Heating of Carbon Fibers [15,16] 

Previous authors 113-161 h ave compared joule heating in the fiber and dielectric 
heating in the matrix and shown that dielectric heating is the dominant 
mechanism. The current effort includes the contact resistance mechanism and 
performs a parametric study of all three mechanisms for the process variables 
defined for thermoplastic laminates. Successful modeling will identify the key 
heating mechanism and optimize induction-based processing parameters to meet 
quality and performance requirements. This will enable transition from 
thermosets to thermoplastics, thus eliminating potentially large hazardous waste 
stream due to shelf-life expiration. 

Each carbon fiber is treated as a resistor and the heat generated is calculated from 

(3) 
where $iber is the induced current flowing in the fiber and R+ is the resistance of 
the fiber, which can be expressed as 

(4 

where Afiber is the cross-sectional area of the fiber and I, and I, are the spacing 
distances between fiber intersections in the x and y directions, respectively. Note 
that I, and 1, vary according to the mesh size as shown in Figure 10. 

2.2.1.3 Dielectric Hysteresis Heating at Fiber Junctions [13,14]. 

If the distance between the fibers at the junction is enough to form a capacitor, 
dielectric heating takes place, since the molecular dipoles in the matrix cannot 
rotate with the same frequency of the induced voltages in the fibers. The 
dissipation factor (tan S), which is one of the electrical properties of the matrix, 
determines how much heat will be dissipated. The impedance of the capacitor is 
I/ (oC tan 6), where Q is ,the angular frequency of the alternating current and C is 
the capacitance of the material. Considering the configuration of the fiber 
junction shown in Figure 11, the capacitance of the dielectric material can be 
expressed as follows: 

where K is the relative dielectric constant of the material and EO is the permittivity 
of vacuum (8.85 x lo-12 f/m). A, and h are the projection area and distance 
between the fibers at the junction, respectively. Therefore, the impedance of the 
capacitor (ZC) can be written as 

2, = 
h 

WKE ,(tX+$, ’ 
(7) 
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Figure 11. Circuit model for dielectric heating. 

The heating generated by the capacitor is as follows: 

h (8) 

2.2.1.4 Heat Generated by Fiber Contact Resistance 

If the fibers at the junction are in contact or the distance between fibers is very 
short, heating can occur at the contact region due to contact resistance between 
the fibers. However, as mentioned previously, it is hard to quantify the contact 
resistance, as it is a function of surface roughness of prepreg and the laminate 
processing parameters. A simple resistor can model the fiber contact and the 
heating mechanism (Figure 12), and through parametric studies and 
experiments, the contact resistance is estimated. 

Fiber 
c 

Contact Regioxl 

Rj = Rjc 

Figure 12. Circuit model for heating by fiber contact resistance. 
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I emf Field 1 
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urrent Segments 
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Figure 14. Schematic of a 2-ply heating model. 

The process variables used in the model are: (1) coil type (pancake, conical, 
paper clip, and solenoid), (2) coil size (outer dimension, inner dimension, (3) 
number of turns, (4) spacing between turns), (5) distance between induction coil 
and composite, (6) frequency of the current in the induction coil, and (7) size and 
geometry of the composite. 

Variables in the numerical model for parametric studies are mesh size and 
density, fiber-fiber distance at the interface of two plies, and fiber-fiber contact 
resistance or equivalent impedance for fiber junction. 

2.2.1.7 Two-Ply Model Results 

Initial experiments focused on evaluating numerical predictions qualitatively. 
This was done by heating 2-ply stacks at various angles - [O/90], [O/O] -under a 
known magnetic field and comparing measured heating patterns, obtained using 
a calibrated thermal infrared camera, with the 2-ply model predictions. Results 
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are subject to potentially critical polymer degradation as a result of a little- 
studied phenomenon known as thermoelectric degradation [19]. When polymers 
degrade through any mechanism, they suffer significant losses in strength, 
stiffness, and durability. 

The focus of this effort is on identifying degradation mechanisms during 
electromagnetic induction processing and quantifying their effects on 
performance. There are two possible degradation scenarios associated with 
induction-based processing of carbon/thermoplastics: thermal degradation, and 
electrical degradation due to dielectric breakdown in the matrix. 

2.2.2.1 Thermal Degradation Study 

Weight loss and molecular weight (MW) measurements were used to 
characterize thermal degradation of both neat resin and prepreg. 
Thermogravimetric analysis (TGA) was used for weight loss measurements in 
both air and inert (nitrogen) atmospheres. Gel permeation chromatography 
(GPC) was used to obtain MW measurements. In addition, dissolution times for 
resins in a good solvent (methylene chloride) were also measured. 

2.2.2.2 Weight Loss Measurements 

TGA for both neat PEI and AS4/PEI prepreg indicates no measurable weight loss 
of the bulk material up to 500 “C, as shown in Figure 19. Isothermal TGA data 
also shows. that no weight loss was observed at 350 “C, for up to 1 hr. 
Approximately 2% weight loss was observed at 450 “C after 30 min, which 
indicates significant degradation. Since the normal processing temperature is 
330 OC, thermal degradation of the bulk material is expected to be minimal as 
long as the electromagnetic induction processed material does not exceed the 
processing window. 

Neat PEI samples were exposed to various thermal histories using a TGA 
chamber, and the glass transition temperature was measured using DMA. 
Changes in resin color and dissolving time in a good solvent (methylene 
chloride) were also noted. As shown in Table 3, no significant changes in glass 
transition temperature were observed. However, the color of the resin changed 
from yellow to black, and the dissolving time increased significantly when 
temperature and time increased. Oxygen in the atmosphere also affects the color 
change and dissolving time in the solvent. In several cases (G=K), there was 
some gel left over in the solution, which obviously indicates that crosslinking 
reactions occurred in the polymer. 

The TGA study shows that weight loss alone is not sufficient to identify the 
degree of degradation of the polymer. The initiation of crosslinking in the 
polymer is a better measure of the onset of degradation. Crosslinking on a 
composite surface hinders diffusion of polymer chains during processing of 
complex parts and may result in poor bonding and performance. 
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Table 3. Experimental data of neat ultem 1000 resin under various heat treatments. 

Condition of 1 Tg 1 Color 1 Dissolving Time in Solvent 1 
1 Sample 1 Heat Treatient 1 Atmosphere 1 From DMA 1 Change I (Methy!lene Chloride) I 

1 A 1 No treatment 1 I 210 1 None ( Lessthan2hr I 
B 

C 

330 “C, 3omin 
330 “C, 
3omil-l 

Nitrogen 

Air 

210 None 

210 Mild 

Lessthan 2 hr 

3hr 
I I 1  

I 

D 
350 “C, 
30 min 

Nitrof ;en I 210 None 4hr I 

I E 

t 

I F 

I G 

-_ --_ 
350 “C, 
60 min Nitrogen 210 Mild 5hr 

350 “C, 
30 min Air 210 Moderate 6hr 

I 

350 “C, 
hn min I Air I 210 I Moderate I Some left over as a gel I 

I I -- 1.s.s. I I I I I 

I I H 
400 “C, 
3omin 

Nitrogen 1 210 IModerate Some left over as a gel 
I 

I I I 400 “C, 
60 min Nitcogt m 210 ) Moderate ( Some left over as a gel 

I 

J 
400 “C, 
30 min 

Air 210 Severe Some left over as a gel 

K 
400 “C, 
60 min 

Air 210 Severe Some left over as a gel 

Results from GPC analysis are shown in Table 4. Neat resin and prepreg 
specimens were tested under various thermal histories in air, nitrogen, and 
vacuum atiospheres. All the GPC curve areas were intensity normalized with 
the neat resin case (sample A). In the neat resin study, no change is observed up 
to 350 “C for 30 min in nitrogen (AeD). However, in the presence of air 
(atmospheric oxygen), significant increases in the GPC-curve areas are observed, 
indicating the presence of crosslinked polymer chains. Samples D and F show 
the effect of atmosphere, F and J show the effect of temperature, and J kd K 
show the effect of time in a reactive atmosphere (air). The GPC area indicates the 
onset of crosslinking (and degradation) at lower temperatures than weight-loss 
tests and hence is a better tool to quantify degradation and establish process 
limits. For prepreg processed under vacuum conditions, some crosslinking 
occurs at 350 “C (1.13 compared to 1.08 baseline) while significant crosslinking 
degradation occurs at 400 “C. In comparison, specimens processed in air exhibit 
higher levels of degradation at both test temperatures, as expected. 
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Table 4. Degradation study of PEI and AS4/PEI prepreg using GPC. 

Area Ratio Under 
Sample Process Temperature Time Atmosphere the GPC Curve 

(“c> (fi) 
A Resin No treatment - - 1.00 

I P I Oven I 330 I 20 I Air I 1.21 I 
Q Oven 350 30 Air 1.31 
R Oven 350 60 Air 1.39 
S Oven 400 30 Air 1.37 
T Oven 400 60 Air 1.48 
U 1 Induction ] 309 1 1 Vacuum 1 1.07 
V 1 Induction ] 319 1 I Vacuum I 1.07 
w Induction 330 1 Vacuum 1.08 
X Induction 387 1 Vacuum 1.05 
Y Induction 405 1 Vacuum 1.06 

The induction-processed samples were subjected to high frequency magnetic 
fields for approximately 1 min, which was chosen based on design cycle times in 
electromagnetic-induction-based process for manufacture of laminates. 
Magnetic field parameters were selected to mimic process conditions in the 
manufacturing process. Preliminary tests performed under vacuum atmosphere 
indicate no measurable polymer degradations under these conditions, even 
though the composite laminate does reach the degradation temperatures of 
380 “C and 400 “C (samples X and Y, respectively). 

2.2.2.4 Electrical Degradation Study 

Dielectric breakdown of polymers results in localized damage, which leads to 
deterioration of the mechanical properties of the composite [20]. Several 
mechanisms can occur and lead to breakdown, such as discharge breakdown and 
intrinsic breakdown. In this effort, the purpose is to identify electromagnetic 
parameters that produce breakdown; not to elucidate the mechanisms for this 
breakdown. Thus, it is show that dielectric breakdown is not likely to occur 
during electromagnetic processing of AS4/ PEI. 
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Breakdown measurements were performed on neat PEI films of various 
thicknesses. The junction of fiber overlap is the region of expected breakdown 
and the thickness of PEI in these regions is small (submicron). Thin films, as 
small as 100 run, were fabricated using a solvent-based spin-coating technique. 

The dielectric breakdown voltages for neat PEI films of various thickness are 
presented in Figure 20. The breakdown voltage increases as the sample thickness 
increases. The voltage required for breakdown in a 100~run film of PEI is 
-350 V. The voltage drop in the induced current loops during electromagnetic 
processing is an order of magnitude smaller. For example, the induced voltage 
due to a three-turn coil with a 10-A current at a frequency of 10 MHz and 
affecting a 0.1-m square loop in the composite is only 40 V. It may be concluded 
that dielectric breakdown of the matrix is unlikely during electromagnetic 
processing of AS4/PEI composites. 
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Figure 20. Breakdown voltage measurements for neat PEI films. 

2.2.2.5 Mechanical Performance 

Short beam shear (ASTM D 2344) [21] and compression (ASTM 695) [22] tests 
were performed with autoclaved and electromagnetic-induction-processed 
AS4/PEI specimens. These two properties are directly related to the matrix 
properties in the composite and are sensitive to matrix degradation. High 
pressure (75 psi) was used in order to eliminate the void content effect on 
properties. Measured void contents were less than 1% for both samples. The 
mechanical test results are shown in Table 5 and indicate no loss in performance 
due to electromagnetic induction-based processing of AS4/PEI. 
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Table 5. Comparison of mechanical properties. 

Process Apparent Shear Strength Compressive Strength 
(psi) CW 

Electromagnetic-Induction 
Processing (A)” 1,130o f 500 120.1 + 1.2 

Autoclave (B)b 1,150o + 500 118.3 f 1.8 

+‘rocess A: Autoclaved at vacuum; induction heated; autoclaved at 75 psi. 
W’rocess B: Autoclaved at vacuum; autoclaved at 75 psi. 

2.2.3 Induction Coil Design 

A major advantage of induction heating technology is coil-design flexibility. The 
size and shape of an induction coil can be “fit,” or matched, to the composite part 
that is to be heated, even for geometrically complex shapes. It is also possible to 
use a simple coil design and heat complex geometric shapes using programmed 
motion with a robot. Based on induction coil models, coil designs were 
developed for a 12-in wide laminate process. This involves lamination or 
consolidation of an 8-ply prepreg in the desired orientation into a consolidated 
laminate with specified quality. This is achieved by induction heating the 
prepreg stack up to process temperature, followed by consolidation under 
pressure. 

2.2.3.1 Laminator Coil Design 

The function of the laminator or the lamination stage is to fabricate 8-ply 
thermoplastic laminates at high throughputs (-20 ft/min) and desired quality. 
Thus, the induction heating stage of. this process step has to uniformly and 
rapidly heat the incoming material (8-ply prepreg stack) up to the process 
temperature while allowing continuous material flow, as shown in Figure 21. 
The challenge is to handle incoming prepreg stacks of various orientations and 
still meet the rapid and uniform heating requirements. 

Several different coil configurations were modeled and tested resulting in the 
selection of a rectangular (or paperclip shaped) coil for the laminator. The coil 
geometry and resultant temperature profiles are shown in Figures 22 and 23, 
respectively. 

Work is in progress to optimize the rectangular coil geometry to further reduce 
temperature gradients and improve final laminate quality. 

2.2.4 Conclusions to Induction-Based Thermoplastic Composite Lamination 

Work to date has established that induction heating is a key technology 
component for the use of carbon/thermoplastics in Army composite structures. 
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3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be 
used.) 

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) 

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs 
avoided, or efficiencies achieved, etc? If so, please elaborate. 

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, 
technical content, format, etc.) 

Organization 

CURRENT 
ADDRESS 

E-mail Name 

Street or P-0. Box No. 

City, State, Zip Code 

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or 

2 Incorrect address below. 

OLD 
ADDRESS 

Organization 

Name 

Street or P.O. Box No. 

City, State, Zip Code 

(Remove this sheet, fold as indicated, tape closed, and mail.) 
(DO NOT STAPLE) 
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